Fixed Point Iteration for Computing the Time Elapse Operator
نویسندگان
چکیده
We investigate techniques for automatically generating symbolic approximations to the time solution of a system of differential equations. This is an important primitive operation for the safety analysis of continuous and hybrid systems. In this paper we design a time elapse operator that computes a symbolic over-approximation of time solutions to a continous system starting from a given inital region. Our approach is iterative over the cone of functions (drawn from a suitable universe) that are non negative over the initial region. At each stage, we iteratively remove functions from the cone whose Lie derivatives do not lie inside the current iterate. If the iteration converges, the set of states defined by the final iterate is shown to contain all the time successors of the initial region. The convergence of the iteration can be forced using abstract interpretation operations such as widening and narrowing. We instantiate our technique to linear hybrid systems with piecewiseaffine dynamics to compute polyhedral approximations to the time successors. Using our prototype implementation TimePass, we demonstrate the performance of our technique on benchmark examples.
منابع مشابه
Solving time-fractional chemical engineering equations by modified variational iteration method as fixed point iteration method
The variational iteration method(VIM) was extended to find approximate solutions of fractional chemical engineering equations. The Lagrange multipliers of the VIM were not identified explicitly. In this paper we improve the VIM by using concept of fixed point iteration method. Then this method was implemented for solving system of the time fractional chemical engineering equations. The ob...
متن کاملDhage iteration method for PBVPs of nonlinear first order hybrid integro-differential equations
In this paper, author proves the algorithms for the existence as well as the approximation of solutions to a couple of periodic boundary value problems of nonlinear first order ordinary integro-differential equations using operator theoretic techniques in a partially ordered metric space. The main results rely on the Dhage iteration method embodied in the recent hybrid fixed point theorems of D...
متن کاملOn some fixed points properties and convergence theorems for a Banach operator in hyperbolic spaces
In this paper, we prove some fixed points properties and demiclosedness principle for a Banach operator in uniformly convex hyperbolic spaces. We further propose an iterative scheme for approximating a fixed point of a Banach operator and establish some strong and $Delta$-convergence theorems for such operator in the frame work of uniformly convex hyperbolic spaces. The results obtained in this...
متن کاملOn new faster fixed point iterative schemes for contraction operators and comparison of their rate of convergence in convex metric spaces
In this paper we present new iterative algorithms in convex metric spaces. We show that these iterative schemes are convergent to the fixed point of a single-valued contraction operator. Then we make the comparison of their rate of convergence. Additionally, numerical examples for these iteration processes are given.
متن کاملNew three-step iteration process and fixed point approximation in Banach spaces
In this paper we propose a new iteration process, called the $K^{ast }$ iteration process, for approximation of fixed points. We show that our iteration process is faster than the existing well-known iteration processes using numerical examples. Stability of the $K^{ast}$ iteration process is also discussed. Finally we prove some weak and strong convergence theorems for Suzuki ge...
متن کامل